Dr. Moritz Hauck

Wissenschaftlicher Mitarbeiter
Numerische Mathematik
Telefon: +49 821 598-3932
E-Mail: moritz.hauck@math.uni-augsburg.de
Raum: 1307 (I)
Sprechzeiten: nach Vereinbarung
Adresse: Universitätsstraße 12a, 86159 Augsburg

Publications

Submitted articles:

 

[9]

 

 

F. Bonizzoni, M. Hauck, and D. Peterseim. A reduced basis super-localized orthogonal decomposition for reaction-convection-diffusion problems, ArXiv e-prints, 2022.

[ URN ]

[8]

 

 

P. Freese, M. Hauck, T. Keil, and D. Peterseim. A Super-Localized Generalized Finite Element Method, ArXiv e-prints, 2022.

[ arXiv ]

[7]

 

M. Hauck and A.Målqvist. Super-Localization of spatial network models, ArXiv e-prints, 2022.

[ arXiv ]

[6]

 

 

P. Freese, M. Hauck, and D. Peterseim. Super-Localized Orthogonal Decomposition for high-frequency Helmholtz problems, ArXiv e-prints, 2021.

[ arXiv ]

 

Refereed articles:

 

[5]

 

 

Z. Dong, M. Hauck, and R. Maier. An improved high-order method for elliptic multiscale problems, SIAM Journal on Numerical Analysis, 61 (4); 1918-1937, 2023.

[ DOI ]

[4]

 

 

M. Hauck and D. Peterseim. Super-localization of elliptic multiscale problems. Mathematics of Computation, 92; 981-1003, 2022.

[ DOI ]

[3]

 

 

M. Hauck and D. Peterseim. Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems. SIAM Multiscale Modeling & Simulation, 20 (2); 657-684, 2022.

[ DOI ]

[2]

 

 

A. Rupp, M. Hauck, and V. Aizinger. A subcell-enriched Galerkin method for advection problems. Computers & Mathematics with Applications, 93: 120-129, 2021.  

[ DOI ]

[1]

 

 

M. Hauck, V. Aizinger, F. Frank, H. Hajduk, and A. Rupp. Enriched Galerkin method for the shallow-water equations. GEM - International Journal on Geomathematics, 11, 31, 2020.

[ DOI ]

 

Theses:

 

[Th3]

 

M. Hauck. Numerical Homogenization: Multi-resolution and Super-localization Approaches, PhD thesis, 2023.

[ URN ]

[Th2]

 

M. Hauck. Analysis and Implementation of an Enriched Galerkin Scheme for the Shallow-Water Equations, Master thesis, 2020.

[Th1]

 

M. Hauck. Stabilization Techniques for the Finite Element Method applied on Advection-Dominated Problems, Bachelor thesis, 2018.

 

 

Suche