Dr. Moritz Hauck
Telefon: | +49 821 598-3932 |
E-Mail: | moritz.hauck@math.uni-augsburg.de |
Raum: | 1307 (I) |
Sprechzeiten: | nach Vereinbarung |
Adresse: | Universitätsstraße 12a, 86159 Augsburg |
Publications
Submitted articles:
[9]
|
F. Bonizzoni, M. Hauck, and D. Peterseim. A reduced basis super-localized orthogonal decomposition for reaction-convection-diffusion problems, ArXiv e-prints, 2022. [ URN ] |
[8]
|
P. Freese, M. Hauck, T. Keil, and D. Peterseim. A Super-Localized Generalized Finite Element Method, ArXiv e-prints, 2022. [ arXiv ] |
[7]
|
M. Hauck and A.Målqvist. Super-Localization of spatial network models, ArXiv e-prints, 2022. [ arXiv ] |
[6]
|
P. Freese, M. Hauck, and D. Peterseim. Super-Localized Orthogonal Decomposition for high-frequency Helmholtz problems, ArXiv e-prints, 2021. [ arXiv ] |
Refereed articles:
[5]
|
Z. Dong, M. Hauck, and R. Maier. An improved high-order method for elliptic multiscale problems, SIAM Journal on Numerical Analysis, 61 (4); 1918-1937, 2023. [ DOI ] |
[4]
|
M. Hauck and D. Peterseim. Super-localization of elliptic multiscale problems. Mathematics of Computation, 92; 981-1003, 2022. [ DOI ] |
[3]
|
M. Hauck and D. Peterseim. Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems. SIAM Multiscale Modeling & Simulation, 20 (2); 657-684, 2022. [ DOI ] |
[2]
|
A. Rupp, M. Hauck, and V. Aizinger. A subcell-enriched Galerkin method for advection problems. Computers & Mathematics with Applications, 93: 120-129, 2021. [ DOI ] |
[1]
|
M. Hauck, V. Aizinger, F. Frank, H. Hajduk, and A. Rupp. Enriched Galerkin method for the shallow-water equations. GEM - International Journal on Geomathematics, 11, 31, 2020. [ DOI ] |
Theses:
[Th3]
|
M. Hauck. Numerical Homogenization: Multi-resolution and Super-localization Approaches, PhD thesis, 2023. [ URN ] |
[Th2]
|
M. Hauck. Analysis and Implementation of an Enriched Galerkin Scheme for the Shallow-Water Equations, Master thesis, 2020. |
[Th1]
|
M. Hauck. Stabilization Techniques for the Finite Element Method applied on Advection-Dominated Problems, Bachelor thesis, 2018. |