Wintersemester 2020/2021

Symplectic Seminar: Integrable System

  • This is an online seminar.
    Please ask Prof. Kai Cieliebak for­ login details.
  • You can download the whole plan of the talks here.

 

Plan of talks

Dienstag, 03. November 2020, 10:15 Uhr, Zoom

yyyy Kai Cieliebak, Universität Augsburg
  Organisational Meeting
 
Dienstag, 10. November 2020, 10:15 Uhr, Zoom
  Evgeny Volkov, Universität Augsburg
  Arnold-Liouville theorem [1]
 

Dienstag, 17. November 2020, 10:15 Uhr, Zoom

  Yannis Bähni, Universität Augsburg
  The Kepler problem (including Runge-Lenz vector,spherical Kepler problem) [2,3]
   
Dienstag, 24. November 2020, 10:15 Uhr, Zoom
  Miguel Pereira, Universität Augsburg
  Bi-Hamiltonian systems [4]
   
Dienstag, 01. Dezember 2020, 10:15 Uhr, Zoom  
  Marián Poppr, Universität Augsburg
  Integrable billards [5]
   
Dienstag, 08. Dezember 2020, 10:15 Uhr, Zoom  
  Urs Frauenfelder, Universität Augsburg
  The symmetric (Lagrange) spinning top via Lie algebras
   
Dienstag, 15. Dezember 2020, 10:15 Uhr, Zoom  
  Frederic Wagner, Universität Augsburg
  Integrable systems and algebraic geometry I: Algebraic curves and their Jacobians [6, Appendix 4]
   
Dienstag, 22. Dezember 2020, 10:15 Uhr, Zoom  
  Alexandru Doicu, Universität Augsburg
  Integrable systems and algebraic geometry II: Rigid body with a xed point [6, Chapter I]
   
Dienstag, 12. Januar 2020, 10:15 Uhr, Zoom  
  Kai Cieliebak, Universität Augsburg
  Integrable systems and algebraic geometry III: The symmetric (Lagrange) spinning top [6, Chapter II]
   
Dienstag, 19. Januar 2020, 10:15 Uhr, Zoom  
  Julius Natrup, Universität Augsburg
  Integrable Boltzmann system [9]
   
Dienstag, 26. Januar 2020, 10:15 Uhr, Zoom  
  Lei Zhao, Universität Augsburg
  Projective dynamics
   
Dienstag, 02. Februar 2020, 10:15 Uhr, Zoom  
  t.b.a.
   
   
Literature:
[1] Arnold, Mathematical Methods of Classical Mechanics
[2] Albouy, Lecture Notes on the 2-Body Problem
[3] Zhao, A note on the passing time of the spherical Kepler problem
[4] Fernandes, Completely integrable bi-Hamiltonaian systems
[5] Tabachnikov, Geometrie und Billard
[6] Audin, Spinning tops
[7] Perelomov, Integrable systems and Lie algebras
[8] Hitchin, Segal and Ward, Integrable Systems
[9] Felder, Poncelet property and quasi-periodicity of the integrable Boltzmann system

Search