Dr. Christoph Zimmer

Research Associate
Computational Mathematics
Phone: +49 821 598-3931
Email: christoph.zimmer@math.uni-augsburg.de
Room: 2316 (I)
Visiting hours: by appointment
Address: Universitätsstraße 12a, 86159 Augsburg

Publications

[1]

R. Altmann and C. Zimmer. Runge–Kutta methods for linear semi-explicit operator differential-algebraic equations. Math. Comp., Vol. 87, 2018, pp. 149–174.
[2]

A. Moses Badlyan and C. Zimmer. Operator-GENERIC formulation of thermodynamics of irreversible processesArXiv Preprint 1807.09822, 2018.

[3]

R. Altmann and C. Zimmer. On the smoothing property of linear delay partial differential equations. J. Math. Anal. Appl., Vol. 467, 2018, pp. 916–934.

[4]

R. Altmann and C. Zimmer. Time discretization schemes for hyperbolic systems on networks by ε-expansion. ArXiv Preprint 1810.04278, 2018 (also Oberwolfach Preprint 2019-03).

[5]

R. Altmann and C. Zimmer. Exponential integrators for semi-linear parabolic problems with linear constraints. In Progress in Differential-Algebraic Equations II, Springer, Cham, 2020, pp. 137–164.

[6]

R. Altmann and C. Zimmer. Singular perturbation results for linear partial differential-algebraic equations of hyperbolic type. J. Math. Anal. Appl., Vol. 511(2), 2022, 126095.

[7]

R. Altmann, B. Kovács, and C. Zimmer. Bulk–surface Lie splitting for parabolic problems with dynamic boundary conditions. IMA J. Numer. Anal., drac002, 2022.

[8]

R. Altmann and C. Zimmer. Dissipation-preserving discretization of the Cahn–Hilliard equation with dynamic boundary conditions. ArXiv Preprint 2203.15097, 2022.

[9]

R. Altmann and C. Zimmer. A second-order bulk–surface splitting for parabolic problems with dynamic boundary conditions. ArXiv Preprint 2209.07835, 2022.

 

Theses

[Th1] C. Zimmer. Adaptive Simulation eines Elastischen Pendels. Bachelor's thesis, TU Berlin, 2013.
[Th2] C. Zimmer. Theorie und Numerik von Linearen Operator-Differentiell-Algebraischen Gleichungen mit Zeitverzögertem Term. Master's thesis, TU Berlin, 2015.
[Th3] C. Zimmer. Temporal Discretization of Constrained Partial Differential Equations. Dissertation, TU Berlin, 2021

Search