Press release 57/22 - 17.06.2022

Humboldt-Stipendiat forscht an neuartigen Quantenmagneten

Physikerinnen und Physiker der Universität Augsburg tragen gemeinsam mit Dr. Prashanta Mukharjee zur Grundlagenforschung in der ,Quanteninformationstechnologie‘ bei

With a 2-year scholarship from the Alexander von Humboldt Foundation, Dr. Prashanta Mukharjee from India is conducting research at the University of Augsburg in the field of quantum materials. The results of his basic research could contribute to the development of a new generation of quantum computers in a few decades. In addition to research, the experimental physicist also contributes to teaching.

Magnetism is a remarkable physical phenomenon with many applications. Even in ancient Greece and ancient China, seafarers used it for navigation with compass needles. In the 19th century, scientists recognized the connection between magnetism and electrical currents, but it was only with the development of quantum mechanics in the 1920s that it became possible to understand magnetic materials: magnetism is caused by orbital and spin moments of unpaired electrons. The insight on ferromagnets, in which the moments are rigidly aligned, made possible numerous technical applications without which our life today would be unthinkable, such as electric motors, loudspeakers, generators or hard disk storage.

© University of Augsburg

Focus of current research: Quantum magnets


Recently, basic research has also focused on what are called quantum magnets, which have quite different properties from classic ferromagnets. Humboldt fellow Dr. Prashanta Mukharjee will also be carrying out research on these over the next two years and has chosen the Center for Electronic Correlation and Magnetism at the University of Augsburg as his home institute. "The goal of his project is to create an entangled quantum state," explains Prof. Dr. Philipp Gegenwart, Head of the Department of Experimental Physics VI at the University of Augsburg. "This means that the magnetic moments are no longer fixedly aligned even at low temperatures, as in a 'classic' magnet, but alternate between different settings in each case, and the ground state is a quantum mechanical superposition of all the different setting options of all the moments."

From crystal synthesis to measurements at millikelvin temperatures

Gegenwart proceeds to explain that the aim of the research is to detect such quantum entanglement in solids and then to control it in a targeted manner, with the long-term perspective of new applications in quantum information technology - perhaps even use in a new generation of quantum computers. The scholarship holder’s research project could be a building block on this path. Gegenwart says: “Dr. Mukharjee is working on the synthesis and characterization of new cobalt-containing compounds with a hexagonal honeycomb structure in which quantum entanglement has been theoretically predicted.” High-quality crystals will then be used to search for signs of quantum entanglement. This will require experiments at extremely low temperatures below - 272 °C, i. e. in the range of just one Kelvin above absolute zero. A particularly important measurement method here is nuclear magnetic resonance, abbreviated to NMR.

NMR measurement method makes Augsburg an attractive research location

Even during his doctoral studies at the research university, the "Indian Institute of Science Education and Research, Thiruvananthapuram" (IISER-TVM), Dr. Mukharjee worked on the synthesis and study of new quantum magnets. During a period spent at the Max Planck Institute CPFS in Dresden, he then learned about the NMR method. "These skills are important for his demanding research project," says Gegenwart. "Studies with millikelvin NMR are only possible in Germany in Augsburg, which was an important argument for the candidate's choice of location."

The Humboldt Research Fellowship for Postdocs is awarded to scientists from abroad with above average qualifications who are at the beginning of their academic career. Depending on their area of interest and the research project, fellows choose an academic institution in Germany themselves. As a Humboldt fellow, Dr. Mukharjee is not obliged to engage in teaching. Nevertheless, he supervises students during practical courses in the lab and has already integrated a master's project thesis into his research project. He remarks: "I think that through my commitment I can not only develop my social skills, but also contribute to bridging the gap between pure research on the one hand and university life on the other."

Scientific Contact

Experimental Physics VI

Media Contact

Dr. Manuela Rutsatz
Media Officer
Communications and Media Relations