COHYPERA: Computed hyperspectral perfusion assessment

Seed Funding UAU Project


Runtime: 24 months


Over the last years, imaging photoplethysmography (iPPG) has been attracting immense interest. iPPG assesses the cutaneous perfusion by exploiting subtle color variations from videos. Common procedures use RGB cameras and employ the green channel or rely on a linear combination of RGB to extract physiological information. iPPG can capture multiple parameters such as heart rate (HR), heart rate variability (HRV), oxygen saturation, blood pressure, venous pulsation and strength as well as spatial distribution of cutaneous perfusion. Its highly convenient usage and a wide range of possible applications, e.g. patient monitoring, using skin perfusion as early risk score and assessment of lesions, make iPPG a diagnostic mean with immense potential. Under real -world conditions, however, iPPG is prone to errors. Particularly regarding analyses beyond HR, the number of published works is limited, proposed algorithms are immature, basic mechanisms are not completely understood and iPPG’s potential is far from being exploited. We hypothesize that hyperspectral (HS) reconstruction by artificial intelligence (AI) methods can fundamentally improve iPPG and extend its applicability. HS reconstruction refers to the estimation of HS images from RGB images. The technique has recently gained much attention but is not common to iPPG. COHYPERA aims to prove the potential of HS reconstruction as universal processing step for iPPG. The pursued approach takes advantage of the fact that the HS reconstruction can incorporate knowledge and training data to yield a high dimensional data representation, which enables various analyses.




Noise Embeddings within a Hearing Aid Tailored Deep Learning Noise Suppression Framework

Noise Embeddings within a Hearing Aid Tailored Deep Learning  Noise Suppression Framework

Runtime: 12 Months

Partner: Sivantos GmbH, Erlangen



The overall goal of this project is to develop a Noise Suppression Framework for hearing aids, which can be extended by so called “embeddings” to allow a certain modification of the noise reduction behavior without re-training of the overall system. In doing so, typical hearing aid requirements like the preservation of the desired speech, the overall delay of the system, and certain aspects of flexible parameterization (e.g. with respect to the amount of noise reduction should be considered.

Silent Paralinguistics

Silent Paralinguistics

DFG (German Research Foundation) Project

Runtime: 36 Months

Partner: University of Bremen


We propose to combine Silent Speech Interfaces with Computational Paralinguistics to form Silent Paralinguistics (SP). To reach the envisioned project goal of inferring paralinguistic information from silently produced speech for natural spoken communication, we will investigate three major questions: (1) How well can speaker states and traits be predicted from EMG signals of silently produced speech, using the direct and indirect silent paralinguistics approach? (2) How to integrate the paralinguistic predictions into the Silent Speech Interface to generate appropriate acoustic speech from EMG signals (EMG-to-speech)? and (3) Does the resulting paralinguistically enriched acoustic speech signal improve the usability of spoken communication with regards to naturalness and user acceptance?




Hear The Species

HearTheSpecies: Using computer audition to understand the drivers of soundscape composition, and to predict parasitation rates based on vocalisations of bird species (#SCHU2508/14-1)

(“Einsatz von Computer-Audition zur Erforschung der Auswirkungen von Landnutzung auf Klanglandschaften, sowie der Parasitierung anhand von Vogelstimmen“)

DFG (German Research Foundation) Project, Schwerpunktprogramm „Biodiversitäts-Exploratorien“ 

Runtime: 36 Months

Partner: University of Freiburg


The ongoing biodiversity crisis has endangered thousands of species around the world and its urgency is being increasingly acknowledged by several institutions – as signified, for example, by the upcoming UN Biodiversity Conference. Recently, biodiversity monitoring has also attracted the attention of the computer science community due to the potential of disciplines like machine learning (ML) to revolutionise biodiversity research by providing monitoring capabilities of unprecedented scale and detail. To that end, HearTheSpecies aims to exploit the potential of a heretofore underexplored data stream: audio. As land use is one of the main drivers of current biodiversity loss, understanding and monitoring the impact of land use on biodiversity is crucial to mitigate and halt the ongoing trend. This project aspires to bridge the gap between existing data and infrastructure in the Exploratories framework and state-of-the-art computer audition algorithms. The developed tools for coarse and fine scale sound source separation and species identification can be used to analyse the interaction among environmental variables, local and regional land-use, vegetation cover and the different soundscape components: biophony (biotic sounds), geophony (abiotic sounds) and anthropophony (human-related sounds).





SHIFT: MetamorphoSis of cultural Heritage Into augmented hypermedia assets For enhanced accessibiliTy and inclusion (#101060660)


EU Horizon 2020 Research & Innovation Action (RIA)


Runtime: 01.10.2022 – 30.09.2025

Partners:  Software Imagination & Vision, Foundation for Research and Technology, Massive Dynamic, Audeering, University of Augsburg, Queen Mary University of London, Magyar Nemzeti Múzeum – Semmelweis Orvostörténeti Múzeum, The National Association of Public Librarians and Libraries in Romania, Staatliche Museen zu Berlin – Preußischer Kulturbesitz, The Balkan Museum Network, Initiative For Heritage Conservation, Eticas Research and Consulting, German Federation of the Blind and Partially Sighted


The SHIFT project is strategically conceived to deliver a set of technological tools, loosely coupled that offers cultural heritage institutions the necessary impetus to stimulate growth, and embrace the latest innovations in artificial intelligence, machine learning, multi-modal data processing, digital content transformation methodologies, semantic representation, linguistic analysis of historical records, and the use of haptics interfaces to effectively and efficiently communicate new experiences to all citizens (including people with disabilities).




Machine Learning für Kameradaten mit unvollständiger Annotation

Machine Learning für Kameradaten mit unvollständiger Annotation


Industry Cooperation with BMW AG

Runtime: 01.01.2022 – 31.12.2023

Partner: BMW AG


The project aims at self-supervised and reinforced learning for analysis of camera data with incomplete annotation.


Agent-based Unsupervised Deep Interactive 0-shot-learning Networks Optimising Machines’ Ontological Understanding of Sound
DFG (German Research Foundation) Reinhart Koselleck-Projekt
# 442218748

Soundscapes are a component of our everyday acoustic environment; we are always surrounded by sounds, we react to them, as well as creating them. While computer audition, the understanding of audio by machines, has primarily been driven through the analysis of speech, the understanding of soundscapes has received comparatively little attention.


AUDI0NOMOUS, a long-term project based on artificial intelligent systems, aims to achieve a major breakthroughs in analysis, categorisation, and understanding of real-life soundscapes. A novel approach, based around the development of four highly cooperative and interactive intelligent agents, is proposed herein to achieve this highly ambitious goal. Each agent will autonomously infer a deep and holistic comprehension of sound.  A Curious Agent will collect unique data from web sources and social media; an Audio Decomposition Agent will decompose overlapped sounds; a Learning Agent will recognise an unlimited number of unlabelled sound; and, an Ontology Agent will translate the soundscapes into verbal ontologies.


AUDI0NOMOUS will open up an entirely new dimension of comprehensive audio understanding; such knowledge will have a high and broad impact in disciplines of both the sciences and humanities, promoting advancements in health care, robotics, and smart devices and cities, amongst many others.


Start date: 01.01.2021


Duration: 5 years



Bayerischer Forschungsverbund zum gesunden Umgang mit digitalen Technologien und Medien
BayFOR (Bayerisches Staatsministerium für Wissenschaft und Kunst) Project


Partners: University of Augsburg, Otto-Friedrichs-University Bamberg, FAU Erlangen-Nuremberg, LMU Munich, JMU Würzburg


Runtime 2019-2023 (48 Months)   


Die Digitalisierung führt zu grundlegenden Veränderungen unserer Gesellschaft und unseres individuellen Lebens. Dies birgt Chancen und Risiken für unsere Gesundheit. Zum Teil führt unser Umgang mit digitalen Technologien und Medien zu negativem Stress (Distress), Burnout, Depression und weiteren gesundheitlichen Beeinträchtigungen. Demgegenüber kann Stress auch eine positive, anregende Wirkung haben (Eustress), die es zu fördern gilt. Die Technikgestaltung ist weit fortgeschritten, sodass digitale Technologien und Medien dank zunehmender künstlicher Intelligenz, Adaptivität und Interaktivität die Gesundheit ihrer menschlichen Nutzerinnen und Nutzer bewahren und fördern können. Ziel des Forschungsverbunds ForDigitHealth ist es, die Gesundheitseffekte der zunehmenden Präsenz und intensivierten Nutzung digitaler Technologien und Medien – speziell in Hinblick auf die Entstehung von digitalem Distress und Eustress und deren Folgen – in ihrer Vielgestaltigkeit wissenschaftlich zu durchdringen sowie Präventions- und Interventionsoptionen zu erarbeiten und zu evaluieren. Dadurch soll der Forschungsverbund zu einem angemessenen, bewussten und gesundheitsförderlichen individuellen wie kollektiven Umgang mit digitalen Technologien und Medien beitragen.



Vergangene Projekte

Hier finden Sie eine Übersicht über vergangene Projekte