Dr. David Wiedemann

Applied Analysis

Research interests

  • Mathematical modelling
  • Analysis of partial differential equations
  • Periodic homogenisation
  • Physico-chemical mechanisms in multiscale media (e.g. porous media, biological cells)
  • Fluid mechanics

  • Materials science



T. Neumeier, D. Peterseim, M. A. Peter, D. Wiedemann. Computational polyconvexification of isotropic functions. ArXiv Preprint 2307.15676, 2023.

D. Wiedemann, M. A. Peter. Characterization of polyconvex isotropic functions. ArXiv Preprint 2304.08385, 2023.

D. Wiedemann, M. A. Peter. Homogenisation of the Stokes equations for evolving microstructure. ArXiv Preprint 2109.05997, 2021.



D. Wiedemann, M. A. Peter. Homogenisation of local colloid evolution induced by reaction and diffusion. Nonlinear Analysis 227, 113168, 2023.

D. Wiedemann. The two-scale-transformation method. Asymptotic Analysis, vol. 131, no. 1, pp. 59--82, 2023.



D.Wiedemann, M. A. Peter. Darcy's law for evolving microstructure. Proc. Appl. Math. Mech. 21, 2021.

Curriculum vitae

2014 - 2017  Bachelor of Mathematics, University of Augsburg

2017 - 2019  Master of Mathematics (TopMath), Technical University of Munich

2019 -           Rese           arch assistant, University of Augsburg,

Scholarships and awards

11/2017      TopMath Study Award (for excellent study result), Technical University of Munich

10/2020 -    Recipent of a Doctoral scholarship from Studienstiftung des deutschen Volkes

12/2020 -    Recipent of a  scholarship from Marianne-Plehn-Programm

06/2023      SIAM Travel Award