News
Paper for SG2RL @ ICCV 2023 accepted
The paper “Haystack: A Panoptic Scene Graph Dataset to Evaluate Rare Predicate Classes” by Julian Lorenz, Florian Barthel, Daniel Kienzle, and Rainer Lienhart is accepted at the First ICCV Workshop on Scene Graphs and Graph Representation Learning (SG2RL). The authors present Haystack, a new dataset for scene graph generation that tackles current shortcomings when evaluating with current scene graph datasets. Most notably, Haystack contains rare predicate classes and explicit negative annotations. Only through these properties can rare relationships be reliably evaluated. Based on the design of Haystack, the authors introduce three new scene graph metrics that can be used to gain more detailed insights about the prediction of rare predicate classes.

Paper for L3D-IVU @ CVPR 2023 accepted

Paper for CVSports @ CVPR 2023 accepted

Paper for CV4WS@WACV 2023 accepted
The paper with the title "Detecting Arbitrary Keypoints on Limbs and Skis with Sparse Partly Correct Segmentation Masks" from Katja Ludwig, Daniel Kienzle, Julian Lorenz and Rainer Lienhart is accepted for the workshop Computer Vision for Winter Sports on the IEEE/CVF Winter Conference on Applications in Computer Vision (WACV) 2023. In this paper, the authors describe how to detect arbitrary keypoints on the limbs and skis of ski jumpers. Only a few, partly correct segmentation masks are necessary in the dataset for the presented method.

Paper für die BMVC 2022 akzeptiert
Das Paper mit dem Titel "Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation" von Sebastian Scherer, Robin Schön und Rainer Lienhart wurde für die British Machine Vision Conference (BMVC) 2023 akzeptiert. In diesem Paper beschreiben die Autoren eine Methode die es ermöglich, den Bedarf an großen gelabelten Datensätzen zu verringern, indem nicht gelabelte Daten in das Training einbezogen werden. Als Anwendung verwenden die Autoren die menschlicher Posenschätzung sowie die semantische Segmentierung, wobei besonderes letzteres interessant ist, da hier die Annotation von Daten äußerst zeitaufwendig ist.
First Place in the STOIC Challenge: Prediction of COVID Severity with Convolutional Neural Networks
Daniel Kienzle, Julian Lorenz, Katja Ludwig, Robin Schön and Rainer Lienhart from the chair for Machine Learning and Computer Vision achieved the first place in the STOIC challenge. The goal of the challenge was to predict the severe outcome of COVID-19 one month ahead using CT scans. To this end, the researchers employed convolutional neural networks and transfer learning on various tasks. The challenge was organized by Assistance Publique – Hôpitaux de Paris, Radboud University Medical Center, and Amazon Web Services.
Paper accepted for WACV 2023
The paper "Uplift and Upsample: Efficient 3D Human Pose Estimation with Uplifting Transformers" by Moritz Einfalt, Katja Ludwig and Rainer Lienhart is accepted at IEEE/CVF Winter Conference on Applications in Computer Vision (WACV) 2023. In this paper, the authors present a method to drastically reduce the computational complexity of 3D Human Pose Estimation with Transformers while maintaining smooth and precise 3D motion sequences.

Paper accepted for the Workshop on AI-enabled Medical Image Analysis at European Conference on Computer Vision 2022
The paper titled "COVID detection and severity prediction with 3D-ConvNeXt and custom pretrainings" by Daniel Kienzle, Julian Lorenz, Robin Schön, Katja Ludwig and Rainer Lienhart is accepted at the Workshop on AI-enabled Medical Image Analysis at ECCV 2022.
In this paper, the authors present how the ConvNeXt architecture can be leveraged for the classification of 3D-CT scans. Particularly, various transfer learning methods supporting the application on 3D medical data are explored. With the insights presented in this paper, the authors achieve the 2nd place in the 1st COVID19 Severity
Detection Challenge and the 3rd place in the 2nd COVID19 Detection Challenge.
PhD Defense of Dr. Stephan Brehm
Our chair congratulates Dr. Stephan Brehm on the sucessful defense of his PhD thesis with the title: Image Manipulation and Image Synthesis: Applications and Use-Cases using Deep Neural Networks.
We wish him all the best for his future!
Paper accepted for the IEEE International Conference on Image Processing 2022
The paper titled "Synchronized Audio-Visual Frames With Fractional Positional Encoding for Transformers in Video-to-Text Translation" from Philipp Harzig, Moritz Einfalt und Rainer Lienhart is accepted for the IEEE International Conference on Image Processing 2022. This paper presents a novel way to synchronize audio and video features for the automated generation of textutal video descriptions.

CfP for ACM MMSports'22 (Oct. 10-14, 2022)
Call for Papers
-------------------
Fifth International Workshop on Multimedia Content Analysis in Sports
MMSports'22 @ ACM Multimedia
October 10-14, 2022, Lisbon, Portugal
Important Dates
Submission Due: July 04, 2022
Acceptance Notification: July 29, 2022
Camera Ready Submission: August 21, 2022

PhD Defense of Dr. Philipp Harzig
Our chair congratulates Dr. Philipp Harzig on the sucessful defense of his PhD thesis with the title: Automatic Generation of Natural Language Descriptions of Visual Data: Describing Images and Videos using Recurrent and Self-Attentive Models.
We wish him all the best for his future!