2023
|
Helena Stegherr, Leopold Luley, Jonathan Wurth, Michael Heider and Jörg Hähner. 2023. A framework for modular construction and evaluation of metaheuristics. Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg 2023-01. Institut für Informatik, Universität Augsburg, Augsburg. PDF | BibTeX | RIS
|
Michael Heider, David Pätzel, Helena Stegherr and Jörg Hähner. 2023. A metaheuristic perspective on learning classifier systems. In Mansour Eddaly, Bassem Jarboui and Patrick Siarry (Ed.). Metaheuristics for machine learning: new advances and tools. Springer, Singapore (Computational Intelligence Methods and Applications (CIMA)), 73-98. DOI: 10.1007/978-981-19-3888-7_3 BibTeX | RIS | DOI
|
Neele Kemper, Michael Heider, Dirk Pietruschka and Jörg Hähner. in press. Forecasting of residential unit's heat demands: a comparison of machine learning techniques in a real-world case study. Enery Systems . DOI: 10.1007/s12667-023-00579-y BibTeX | RIS | DOI
|
Michael Heider, Helena Stegherr, Roman Sraj, David Pätzel, Jonathan Wurth and Jörg Hähner. 2023. SupRB in the context of rule-based machine learning methods: a comparative study. Applied Soft Computing 147, 110706. DOI: 10.1016/j.asoc.2023.110706 BibTeX | RIS | DOI
|
Tobias Wittmeir, Michael Heider, André Schweiger, Michaela Krä, Jörg Hähner, Johannes Schilp and Joachim Berlak. 2023. Towards robustness of production planning and control against supply chain disruptions. In David Herberger, Marco Hübner, Volker Stich (Eds.). Proceedings of the Conference on Production Systems and Logistics: CPSL 2023. publish-Ing., Hannover, 65-75 DOI: 10.15488/13425 PDF | BibTeX | RIS | DOI
|
2022
|
Richard Nordsieck, Michael Heider, Anton Hummel and Jörg Hähner. 2022. A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge. In Mehwish Alam, Davide Buscaldi, Michael Cochez, Francesco Osborne, Diego Reforgiato Recupero (Eds.). DL4KG 2022 - Deep Learning for Knowledge Graphs 2022: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2022) co-located with the 21th International Semantic Web Conference (ISWC 2022), virtual conference, online, October 24, 2022. CEUR-WS, Aachen, 7 PDF | BibTeX | RIS | URL
|
Michael Heider, David Pätzel and Alexander R. M. Wagner. 2022. An overview of LCS research from 2021 to 2022. Proceedings of the Genetic and Evolutionary Computation Conference Companion 2086-2094. DOI: 10.1145/3520304.3533985 PDF | BibTeX | RIS | DOI
|
Michael Heider, Helena Stegherr, David Pätzel, Roman Sraj, Jonathan Wurth, Benedikt Volger and Jörg Hähner. 2022. Approaches for rule discovery in a learning classifier system. In Thomas Bäck, Bas van Stein, Christian Wagner, Jonathan Garibaldi, H. K. Lam, Marie Cottrell, Faiyaz Doctor, Joaquim Filipe, Kevin Warwick, Janusz Kacprzyk (Eds.). Proceedings of the 14th International Joint Conference on Computational Intelligence, October 24-26, 2022, in Valletta, Malta. SciTePress, Setúbal, 39-49 DOI: 10.5220/0011542000003332 PDF | BibTeX | RIS | DOI
|
Helena Stegherr, Michael Heider and Jörg Hähner. 2022. Classifying metaheuristics: towards a unified multi-level classification system. Natural Computing 21, 155-171. DOI: 10.1007/s11047-020-09824-0 PDF | BibTeX | RIS | DOI
|
Jonathan Wurth, Michael Heider, Helena Stegherr, Roman Sraj and Jörg Hähner. 2022. Comparing different metaheuristics for model selection in a supervised learning classifier system. Proceedings of the Genetic and Evolutionary Computation Conference Companion 316-319. DOI: 10.1145/3520304.3529015 PDF | BibTeX | RIS | DOI
|
Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj and Jörg Hähner. 2022. Investigating the impact of independent rule fitnesses in a learning classifier system. Lecture Notes in Computer Science 13627, 142-156. DOI: 10.1007/978-3-031-21094-5_11 PDF | BibTeX | RIS | DOI
|
Richard Nordsieck, Michael Heider, Alwin Hoffmann and Jörg Hähner. 2022. Reliability-based aggregation of heterogeneous knowledge to assist operators in manufacturing. 2022 IEEE 16th International Conference on Semantic Computing (ICSC) 131-138. DOI: 10.1109/icsc52841.2022.00027 PDF | BibTeX | RIS | DOI
|
Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj and Jörg Hähner. 2022. Separating rule discovery and global solution composition in a learning classifier system. Proceedings of the Genetic and Evolutionary Computation Conference Companion 248-251. DOI: 10.1145/3520304.3529014 PDF | BibTeX | RIS | DOI
|
Richard Nordsieck, Michael Heider, Anton Hummel, Alwin Hoffmann and Jörg Hähner. 2022. Towards models of conceptual and procedural operator knowledge. In Arild Waaler, Evgeny Kharlamov, Baifan Zhou, Dongzhuoran Zhou (Eds.). SemIIM 2022 - International Workshop on Semantic Industrial Information Modelling 2022: Proceedings of the First International Workshop on Semantic Industrial Information Modelling (SemIIM 2022) co-located with the 19th Extended Semantic Web Conference ESWC 2022, Greece, Crete, 30 May 2022. CEUR-WS, Aachen PDF | BibTeX | RIS | URL
|
2021
|
David Pätzel, Michael Heider and Alexander R. M. Wagner. 2021. An overview of LCS research from 2020 to 2021. In Francisco Chicano and Krzysztof Krawiec (Ed.). Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, July 10 - 14, 2021. ACM, New York, NY, 1648-1656. DOI: 10.1145/3449726.3463173 PDF | BibTeX | RIS | DOI
|
Andreas Wiedholz, Michael Heider, Richard Nordsieck, Andreas Angerer, Simon Dietrich and Jörg Hähner. 2021. CAD-based grasp and motion planning for process automation in fused deposition modelling. In Oleg Gusikhin, Henk Nijmeijer and Kurosh Madani (Ed.). Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, July 6-8, 2021. SciTePress, Setúbal, 450-458. DOI: 10.5220/0010571204500458 PDF | BibTeX | RIS | DOI
|
Helena Stegherr, Michael Heider, Leopold Luley and Jörg Hähner. 2021. Design of large-scale metaheuristic component studies. In Francisco Chicano and Krzysztof Krawiec (Ed.). Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, July 10 - 14, 2021. ACM, New York, NY, 1217-1226. DOI: 10.1145/3449726.3463168 PDF | BibTeX | RIS | DOI
|
Richard Nordsieck, Michael Heider, Anton Winschel and Jörg Hähner. 2021. Knowledge extraction via decentralized knowledge graph aggregation. In Dick Bulterman, Atsushi Kitazawa, David Ostrowski, Phillip Sheu and Jeffrey Tsai (Ed.). 2021 IEEE 15th International Conference on Semantic Computing (ICSC), 27-29 January 2021, Laguna Hills, CA, USA. IEEE, Piscataway, NJ, 92-99. DOI: 10.1109/icsc50631.2021.00024 PDF | BibTeX | RIS | DOI
|
Michael Heider, Richard Nordsieck and Jörg Hähner. 2021. Learning classifier systems for self-explaining socio-technical-systems. In Anthony Stein, Sven Tomforde, Jean Botev, Peter Lewis (Eds.). LIFELIKE 2020 & LIFELIKE 2021, Lifelike Computing Systems Workshop 2020 and 2021: Joint Proceedings of the LIFELIKE 2020 - 8th Edition in the Evolution of the Workshop Series of Autonomously Learning and Optimizing Systems (SAOS) co-located with 2020 Conference on Artificial Life (ALIFE 2020), Online, July 16th, 2020, and the LIFELIKE 2021 - 9th Edition in the Evolution of the Workshop Series of Autonomously Learning and Optimizing Systems (SAOS) co-located with 2021 Conference on Artificial Life (ALIFE 2021), Online, July 19th, 2021. CEUR-WS PDF | BibTeX | RIS | URL
|
2020
|
Richard Nordsieck, Michael Heider, Andreas Angerer and Jörg Hähner. 2020. Evaluating the effect of user-given guiding attention on the learning process. In Esam El-Araby, Sven Tomforde, Timothy Wood, Pradeep Kumar, Claudia Raibulet, Ioan Petri, Gabriele Valentini, Phyllis Nelson and Barry Porter (Ed.). 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), 17-21 August 2020, Washington, DC, USA. IEEE, Piscataway, NJ, 215-221. DOI: 10.1109/acsos49614.2020.00044 PDF | BibTeX | RIS | DOI
|
Michael Heider, David Pätzel and Jörg Hähner. 2020. SupRB: a supervised rule-based learning system for continuous problems. preprint. BibTeX | RIS | URL
|
Michael Heider, David Pätzel and Jörg Hähner. 2020. Towards a Pittsburgh-style LCS for learning manufacturing machinery parametrizations. In Carlos Artemio Coello Coello (Ed.). Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (GECCO '20), Cancún, Mexico, July 2020. ACM, New York, NY, 127-128. DOI: 10.1145/3377929.3389963 PDF | BibTeX | RIS | DOI
|
2019
|
Michael Heider. 2019. Increasing reliability in FDM manufacturing. In C. Draude, M. Lange and B. Sick (Ed.). Informatik 2019: 50 Jahre Gesellschaft für Informatik - Informatik für Gesellschaft (Workshop-Beiträge). Gesellschaft für Informatik e.V., Bonn, 483-491. DOI: 10.18420/inf2019_ws52 PDF | BibTeX | RIS | DOI
|
Richard Nordsieck, Michael Heider, Andreas Angerer and Jörg Hähner. 2019. Towards automated parameter optimisation of machinery by persisting expert knowledge. In Oleg Gusikhin, Kurosh Madani and Janan Zaytoon (Ed.). Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO), July 29-31, 2019, Prague, Czech Republic. SciTePress, Setúbal, 406-413. DOI: 10.5220/0007953204060413 PDF | BibTeX | RIS | DOI
|
2016
|
Sebastian von Mammen, Heiko Hamann and Michael Heider. 2016. Robot gardens: an augmented reality prototype for plant-robot biohybrid systems. In Dieter Kranzlmüller and Gudrun Klinker (Ed.). Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, VRST '16, Munich, Germany, November 2016. ACM, New York, NY, 139-142. DOI: 10.1145/2993369.2993400 BibTeX | RIS | DOI
|