Prof. Dr. Daniel Peterseim

Chair
Computational Mathematics
Phone: +49 821 598-2194
Email: daniel.peterseim@math.uni-augsburg.de
Room: 3036 (L1)
Visiting hours: by appointment
Address: Universitätsstraße 14, 86159 Augsburg
Secretary
Computational Mathematics

Curriculum Vitae

since 2017    Chair of Computational Mathematics, Universität Augsburg

2016              Habilitation in Mathematics, Humboldt-Universität zu Berlin

2013-2017    Professor for Numerical Simulation, Universität Bonn
2009-2013    Head of Junior Research Group, DFG Research Center Matheon & Humboldt-Universität zu Berlin

2009              Wissenschaftlicher Mitarbeiter, Humboldt-Universität zu Berlin

2007              Dissertation in Mathematics, Universität Zürich

2004-2008    Research Associate, Universität Zürich

2004              Diploma in Mathematics, Technische Universität Ilmenau

Research Topics

  • Computational Partial Differential Equations
  • Computational Multiscale Methods
  • Eigenvalue Problems, Wave Phenomena
  • Applications to Mechanics, Physics, and Medicine

Teaching

(applied filters: | Semester: current | Lehrende: Daniel Peterseim | Typen: )

Publications

Submitted Articles:

[6]

 

  R. Altmann, P. Henning and D. Peterseim. The J-method for the Gross-Pitaevskii eigenvalue problem. ArXiv e-prints, 2019.
arXiv ]
[5]   A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. WIAS preprint, 2019.
WIAS ]
[4]   D. Peterseim and B. Verfürth. Computational high frequency scattering from high contrast heterogeneous media. ArXiv e-prints, 2019.
arXiv ]
[3]   P. Henning and D. Peterseim. Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency. ArXiv e-prints, 2018.
arXiv ]
[2]   M. Feischl and D. Peterseim. Sparse compression of expected solution operators. ArXiv e-prints, 2018.
arXiv ]
[1]   R. Altmann, P. Henning, and D. Peterseim. Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials. ArXiv e-prints, 2018.
arXiv ]

 

Refereed Articles:

[42]

 

 

R. Altmann and D. Peterseim. Localized computation of eigenstates of random Schrödinger operators. Accepted for publication in SIAM J. Sci. Comput., 2019.
arXiv ]

[41]   P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. A diffuse modeling approach for embedded interfaces in linear elasticity. Accepted for publication in GAMM Mitteilungen, 2019.
[40]   S. Fu, R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear poroelasticity with high contrast. J. Comput. Phys., 395:286-297, 2019.
arXiv ]
[39]   D. Peterseim, D. Varga, and B. Verfürth. From Domain Decomposition to Homogenization Theory. To appear in DD25 proceedings, 2019.
arXiv ]
[38]   R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear heterogeneous poroelasticity. Accepted for publication in J. Comput. Math., 2019.
arXiv ]
[37]   C. Engwer, P. Henning, A. Målqvist, and D. Peterseim. Efficient implementation of the Localized Orthogonal Decomposition method. Accepted for publication in Comp. Meth. Appl. Mech. Eng., 2019.
bib | arXiv ]
[36]   D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasi-local effective diffusion tensors. Accepted for publication in Communications in Mathematical Sciences, 2019.
bib | arXiv | .pdf 1 ]
[35]   R. Maier and D. Peterseim. Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math., 59(2):443-462, 2019
DOI | arXiv ]
[34]   D. Brown, J. Gedicke, and D. Peterseim. Numerical Homogenization of Heterogeneous Fractional Laplacians. Accepted for publication in SIAM Multiscale Model. Simul., 2017.
arXiv ]
[33]   R. Kornhuber, D. Peterseim, and H. Yserentant. An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comp., 87:2765–2774, 2018.
DOI ]
[32]   H. Alaeian, M. Schedensack, C. Bartels, D. Peterseim, and M. Weitz. Thermo-optical interactions in a dye-microcavity photon Bose-Einstein condensate. New J. Phys., 19(11):115009, 2017.
DOI | arXiv ]
[31]   D. Gallistl, P. Huber, and D. Peterseim. On the stability of the Rayleigh-Ritz method for eigenvalues. Numer. Math., 137(2):339–351, 2017.
bib |DOI | .pdf 1 ]
[30]   P. Hennig, M. Kästner, P. Morgenstern, and D. Peterseim. Adaptive Mesh Refinement Strategies in Isogeometric Analysis - A Computational Comparison. Comp. Meth. Appl. Mech. Eng., 316:424–-448, 2017.
bib | DOI | arXiv | http | .pdf 1 ]
[29]   A. Målqvist and D. Peterseim. Generalized finite element methods for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal., 51(1):147-163, 2017.
bib | DOI | arXiv | .pdf 1 ]
[28]   D. Peterseim. Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp., 86:1005-1036, 2017.
bib | DOI | arXiv | .pdf 1 ]
[27]   D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 72(3):1196-1213, 2017.
bib | DOI | arXiv | .pdf 1 ]
[26]   P. Henning and D. Peterseim. Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials. M3AS Math. Models Methods Appl. Sci. 27(11):2147-2184, 2017.
bib | DOI |.pdf 1 ]
[25]   D. Gallistl and D. Peterseim. Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization. SIAM Multiscale Model. Simul., 15(4):1530–1552, 2017.
DOI |bib | arXiv | .pdf 1 ]
[24]   G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in two dimensions. IMA J. Numer. Anal., drx027, 2017.
DOI | arXiv | .pdf 1 ]
[23]   D. Brown and D. Peterseim. A multiscale method for porous microstructures. SIAM Multiscale Model. Simul., 14:1123-1152, 2016.
bib | DOI | arXiv | .pdf 1 ]
[22]   A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical refinement for a class of admissible mesh configurations. Computer Aided Geometric Design, 47:83-92, 2016.
bib | DOI | http | .pdf 1 ]
[21]   D. Peterseim and R. Scheichl. Robust numerical upscaling of elliptic multiscale problems at high contrast. Computational Methods in Applied Mathematics, 16:579-603, 2016.
bib | DOI | arXiv | .pdf 1 ]
[20]   D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Meth. Appl. Mech. Eng., 295:1-17, 2015.
bib | DOI | arXiv | .pdf 1 ]
[19]   C. Carstensen, K. Köhler, D. Peterseim, and M. Schedensack. Comparison results for the Stokes equations. Appl. Numer. Math., 95:118-129, 2015.
bib | DOI | arXiv | http ]
[18]   C. Carstensen, D. Peterseim, and A. Schröder. The norm of a discretized gradient in H(div)* for a posteriori finite element error analysis. Numer. Math., 132(3):519-539, 2015.
bib | DOI | http ]
[17]   M. Eigel and D. Peterseim. Simulation of composite materials by a network fem with error control. Computational Methods in Applied Mathematics (online), 15(1):21-37, 2015.
bib | DOI | http ]
[16]   P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with linear complexity. Computer Aided Geometric Design, 34:50-66, 2015.
bib | DOI | http | .pdf 1 ]
[15]   P. Henning, A. Målqvist, and D. Peterseim. A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal., 48(05):1331-1349, 2014.
bib | DOI | http ]
[14]   P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization techniques for ground state computations of bose-einstein condensates. SIAM J. Numer. Anal., 52(4):1525-1550, 2014.
bib | DOI | http ]
[13]   A. Målqvist and D. Peterseim. Computation of eigenvalues by numerical upscaling. Numer. Math., 130(2):337-361, 2014.
bib | DOI | arXiv | http ]
[12]   A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583-2603, 2014.
bib | DOI | http ]
[11]   D. Peterseim. Composite finite elements for elliptic interface problems. Math. Comp., 83(290):2657-2674, 2014.
bib | DOI | http ]
[10]   C. Carstensen, D. Peterseim, and H. Rabus. Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math., 123(2):291-308, 2013.
bib | DOI | http ]
[9]   D. Elfverson, E. H. Georgoulis, A. Målqvist, and D. Peterseim. Convergence of a discontinuous galerkin multiscale method. SIAM J. Numer. Anal., 51(6):3351-3372, 2013.
bib | DOI | http ]
[8]   P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149-1175, 2013.
bib | DOI | http ]
[7]   D. Peterseim and C. Carstensen. Finite element network approximation of conductivity in particle composites. Numer. Math., 124(1):73-97, 2013.
bib | DOI | http ]
[6]   C. Carstensen, D. Peterseim, and M. Schedensack. Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal., 50(6):2803-2823, 2012.
bib | DOI | http ]
[5]   D. Peterseim. Robustness of Finite Element Simulations in Densely Packed Random Particle Composites. Netw. Heterog. Media, 7(1), 2012.
bib | DOI ]
[4]   D. Peterseim and S. Sauter. Finite Elements for Elliptic Problems with Highly Varying, Nonperiodic Diffusion Matrix. Multiscale Model. Simul., 10(3):665-695, 2012.
bib | DOI | http ]
[3]   L. Banjai and D. Peterseim. Parallel multistep methods for linear evolution problems. IMA J. Numer. Anal., 32(3):1217-1240, 2011.
bib | DOI | .pdf 1 ]
[2]   D. Peterseim and S. A. Sauter. Finite element methods for the Stokes problem on complicated domains. Comp. Meth. Appl. Mech. Eng., 200(33-36):2611-2623, 2011.
bib | DOI | http ]
[1]   D. Peterseim and S. A. Sauter. The composite mini element - coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal., 46(6):3181-3206, 2008.
bib | DOI | http ]

 

Refereed Articles in Collections:

[4] C. Paulus, R. Maier, D. Peterseim, and S. Cotin. An immersed boundary method for detail-preserving soft tissue simulation from medical images. In: P. Nielsen, A. Wittek, K. Miller, B. Doyle, G. Joldes, and M. Nash, editors, Computational Biomechanics for Medicine, MICCAI 2017, pp. 55–67. Springer, Cham, 2019.
HAL ]
[3] D. Peterseim. Variational multiscale stabilization and the exponential decay of fine-scale correctors. In G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, May 2016.
bib | arXiv | .pdf 1 ]
[2] D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and Engineering. 2016. Accepted for publication.
bib | arXiv | .pdf 1 ]
[1] P. Henning, P. Morgenstern, and D. Peterseim. Multiscale partition of unity. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 185-204. Springer International Publishing, 2015.
bib | DOI | http | .pdf 1 ]

 

Edited Proceedings:

[1]   C. Carstensen, B. Engquist, and D. Peterseim. Computational Multiscale Methods. 2015.
bib | DOI | .pdf 1 ]

 

Articles in Proceedings:

[16]   P. Bringmann, C. Carstensen, D. Gallistl, F. Hellwig, D. Peterseim, S. Puttkammer, H. Rabus, and J. Storn. Towards adaptive discontinuous petrov-galerkin methods. PAMM, 16(1):741-742, 2016.
bib | DOI | http ]
[15]   D. Gallistl, D. Peterseim, and C. Carstensen. Multiscale petrov-galerkin fem for acoustic scattering. PAMM, 16(1):745-746, 2016.
bib | DOI | http ]
[14]   D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. PAMM, 16(1):765-766, 2016.
bib | DOI | http ]
[13]   D. Gallistl and D. Peterseim. Multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Oberwolfach Reports, 12(3):2580-2581, 2015.
bib ]
[12]   P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization for the Gross-Pitaevskii eigenvalue problem with a rough potential. to appear in Oberwolfach Rep., 2014.
bib | DOI ]
[11]   A. Målqvist and D. Peterseim. Multiscale techniques for solving quadratic eigenvalue problems. to appear in Oberwolfach Rep., 2014.
bib | DOI ]
[10]   A. Målqvist and D. Peterseim. Numerical upscaling of eigenvalue problems. Oberwolfach Rep., 10(1):402-405, 2013.
bib | DOI ]
[9]   D. Peterseim and A. Målqvist. Spectrum-preserving two-scale decompositions with applications to numerical homogenization and eigensolvers. Oberwolfach Rep., 10(1):850-853, 2013.
bib | DOI ]
[8]   A. Målqvist and D. Peterseim. Finite element discretization of multiscale elliptic problems. Oberwolfach Rep., 9(1):516-519, 2012.
bib | DOI ]
[7]   D. Peterseim, C. Carstensen, and M. Schedensack. Comparison of finite element methods for the Poisson model problem. Oberwolfach Rep., 9(1):584-587, 2012.
bib | DOI ]
[6]   M. Schedensack, C. Carstensen, and D. Peterseim. Comparison results for first-order FEMs. Oberwolfach Rep., 9(1):495-497, 2012.
bib | DOI ]
[5]   D. Peterseim. Triangulating a system of disks. Proc. 26th European Workshop on Computational Geometry (EWCG), pages 241-244, 2010.
bib | http ]
[4]   D. Peterseim. Composite finite elements for elliptic interface problems. PAMM, 10(1):661-664, 2010.
bib | DOI | http ]
[3]   D. Peterseim. Finite element analysis of particle-reinforced composites. Oberwolfach Rep., 6(2):1597-1665, 2009.
bib | DOI | http ]
[2]   D. Peterseim and S. A. Sauter. Recent advances in composite finite elements. Oberwolfach Rep., 5(2):1233-1293, 2008.
bib | DOI | http ]
[1]   D. Peterseim and S. A. Sauter. The composite mini element: a new mixed FEM for the Stokes equations on complicated domains. PAMM, 7(1):2020101-2020102, 2007.
bib | http ]

 

Theses:

[3]   D. Peterseim. Computational Multiscale Methods for Partial Differential Equations. Habilitation thesis, Humboldt-Universität zu Berlin, 2016.
bib | .pdf 1 ]
[2]   D. Peterseim. The Composite Mini Element: A mixed FEM for the Stokes equations on complicated domains. PhD thesis, Universität Zürich, 2007.
bib | .pdf 1 ]
[1]   D. Peterseim. Numerische Analyse parameterabhängiger periodischer Orbits nichtlinearer dynamischer Systeme mittels Mehrzielmethode und effizienter Fortsetzungstechniken. Master's thesis, IfMath, TU Ilmenau, 2004.
bib ]

 

Other Reports:

[1]   D. Peterseim. Generalized delaunay partitions and composite material modeling. Matheon Preprint, 690, 2010.
bib | http | .pdf 1 ]

 

See also:

Publication server of the University of Augsburg

 

Search