Attitudes towards errors and emotional reactions: A facereading approach

Event Details
Date: 16.01.2020, 17:00 o'clock - 19:00 o'clock 
Location: Raum 2108, Gebäude D, Uni­ver­si­täts­stra­ße 10, 86159 Augsburg
Organizer(s): Prof. Dr. Markus Dresel, Prof. Dr. Ingo Kollar, Fach Psychologie
Topics: Erziehungswissenschaft, Lehrerbildung und Psychologie
Series of events: Psychologisches Forschungskolloquium
Event Type: Vortragsreihe
Speaker(s): Martin Daumiller, Kerstin Fett, Anna Boehler, Daniele Crivaro & Markus Dresel (Lehrstuhl für Psychologie)

Martin Daumiller, Kerstin Fett, Anna Boehler, Daniele Crivaro and Markus Dresel give a talk within the series "Psychologisches Forschungskolloquium".


Errors can be considered important factors in the learning process in that they prompt numerous learning opportunities (e.g., recognizing knowledge gaps, encouraging new learning activities, etc.). However, as errors often have a highly emotional self-reference that can lead to negative emotions and a decrease in learning motivation, a beneficial use of errors requires high self-regulation from learners, especially in terms of affective-motivational regulation (Tulis & Dresel, 2018). Such regulative processes can enable an adaptive reaction to errors that allow a modification of the learning behavior and the use of adequate strategies directed at understanding the origin of the error and how it can be corrected. To this end, prior research identified affective reactions towards errors as important personal factors for understanding how adaptively a learner might react to errors. A fundamental challenge of empirical investigations regarding this topic entails accurately gaining information about the prevalence and regulation of emotions that learners experience after errors. Self-report questionnaires are often used for this purpose in a retrospective manner (so as not to disturb the learning situation), yet are repeatedly criticized for potential biases. One potential solution for this methodological issue involves acquiring information about the emotions that learners feel directly after errors by use of Facereading software to capture the immediate emotions of learners through automatic facial analysis. The current study aimed to investigate this research avenue by asking 86 students to answer knowledge questions within a 50-minute learning unit on the topic of “research methods and statistics”, while simultaneously recording their facial expressions. We present the captured emotions of learners after providing incorrect (38%) versus correct (62%) answers and analyze the development of their emotions after errors. Furthermore, we discuss findings regarding successful affective-motivational regulation and the connection with self-reported attitudes towards errors. Overall, our study highlights the importance of affective-motivational processes in adaptively dealing with errors and discusses Facereading-methodology as a possibility for objectively capturing emotional experiences of learners.

More events of this series of events "Psychologisches Forschungskolloquium"

More events: Department of Psychology

  • June 2024
  • June 2024
    • 17
    • 18
    • 19
    • 20
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
  • July 2024
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
  • July 2024
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
  • July 2024 / August 2024
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
  • August 2024
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • August 2024 / September 2024
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • September 2024
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • September 2024 / October 2024
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
  • October 2024
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • October 2024 / November 2024
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
  • November 2024
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
  • November 2024 / December 2024
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
  • December 2024
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
  • December 2024
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
  • December 2024 / January 2025
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
  • January 2025
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • January 2025 / February 2025
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
  • February 2025
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
  • February 2025 / March 2025
    • 24
    • 25
    • 26
    • 27
    • 28
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
  • March 2025
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
  • March 2025 / April 2025
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
  • April 2025
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • April 2025 / May 2025
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
  • May 2025
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
  • May 2025 / June 2025
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01

Search