Pressemitteilung 84/21 - 19.07.2021

Leitfähige Domänenwände mit vielversprechenden Funktionalitäten

Potenzielles Einsatzgebiet: Entwicklung von elektronischen Kleinst-Bauteilen

Augsburg/MG/CH – Wissenschaftlern der Universität Augsburg und der ETH Zürich gelang erstmals die Entdeckung von nanometerdünnen Domänenwänden mit enorm hoher Leitfähigkeit in einem nicht-oxidischen ferroelektrischen Material. Die starke Wechselwirkung dieser Domänenwände mit einem angelegten Magnetfeld ermöglicht enorme Variationen des Probenwiderstandes, was die Entwicklung von neuartigen nanoelektrischen Elementen, wie beispielsweise nanometergroßer Datenspeicherelemente, ermöglichen könnte.

Links: Bild einer piezoelektrischen Rasterkraftmikroskopiemessung, die eine zick-zack-förmige Domänenwand in GaV4S8 zeigt. Rechts: Bild einer Leitfähigkeits-Rasterkraftmikroskopiemessung, die die Leitfähigkeit der Domänenwände zeigt. © Universität Augsburg

Ein essenzieller Baustein der technologischen Weiterentwicklung ist die Reduktion der Größe elektronischer Bauteile. Die bisher verwendeten Methoden zur Produktion von elektronischen Bauteilen und Schaltkreisen wird jedoch in naher Zukunft an ihre Grenzen stoßen. Daher widmen sich Forscher der Entdeckung und Entwicklung grundlegend neuer Konzepte zur Umsetzung elektronischer Kleinst-Bauteile.

Ferroelektrische Domänenwände als nanometerdünne leitfähige Kabel

Als ferroelektrisch wird ein Material bezeichnet, wenn es eine spontane elektrische Polarisation aufweist. Diese Polarisation entsteht durch eine parallele Ausrichtung elektrischer Dipole. Ferroelektrische Materialien bestehen meist aus verschiedenen polaren Regionen, genannt Domänen, welche sich in der Orientierung ihrer Polarisation unterscheiden.

Domänenwände wiederum sind nanometerdünne, im Grunde genommen zweidimensionale Schnittstellen, die zwei benachbarten Domänen voneinander trennen. Seit einigen Jahren werden diese Domänenwände intensiv untersucht, da sie physikalische Eigenschaften aufweisen können, die in den Domänen verboten sind und weil sie in Zukunft zur Realisierung nanometergroßen elektronischen Komponenten beitragen können. Faszinierenderweise zeigen die Domänenwände in einigen oxidischen, isolierenden Ferroelektrika eine ungewöhnlich hohe Leitfähigkeit. Diese leitfähigen Domänenwände könnten in Zukunft beispielsweise als nanometerdünne leitfähige Kabel in elektronischen Bauteilen Anwendung finden. Kristallographische Defekte und Sauerstofffehlstellen in diesen Oxiden erschweren jedoch deren mögliche Anwendung.

Domänenwände in nicht-oxidischem Material

Forschungsgruppen unter der Leitung der Professoren István Kézsmárki (Universität Augsburg) und Manfred Fiebig (ETH Zürich) berichten in einer jüngst in Nature Communications publizierte Studie nun erstmals über die Entdeckten hochleitfähige Domänenwände in einem nicht-oxidischen Material (GaV4S8) , d.h. in einem Material, das keine Sauerstoffatome enthält.

Obwohl der Volumenanteil der Domänenwände verschwindend klein ist, dominieren sie die gesamte Leitfähigkeit des Materials. Die Domänenwände zeigen faszinierende geometrische Anordnungen, die zu quasi-eindimensionalen leitfähigen Kanälen und zweidimensionalen gefalteten leitfähigen Flächen führen. Die zick-zack-förmigen Domänenwände zeigen zudem sowohl Kopf-zu-Kopf- als auch Fuß-zu-Fuß-Anordnungen der Polarisation in den angrenzenden Domänen. Dies könnte auf alternierende Kanäle mit Elektronen- und Lochleitfähigkeit, also Leitfähigkeit von negativ und positiv geladenen Ladungsträgern, in unmittelbarer Nähe hinweisen.

Vielversprechende Anwendungsmöglichkeiten

Die leitfähigen Domänenwände in diesem nicht-oxidischen Material zeigen einzigartiges Verhalten mit vielversprechenden Funktionalitäten. Besonders hervorzuheben ist die starke Änderung ihrer Leitfähigkeit unter Einwirkung eines Magnetfeldes und die Möglichkeit, die Domänenwände mit einem Magnetfeld zu bewegen und sogar ganz aus der Probe zu entfernen. Diese Annihilation der Domänenwände führt zu einer Änderung des Widerstandes einer makroskopischen Probe um acht Größenordnungen.

„Diese bemerkenswerten Entdeckungen sollten dazu beitragen, die reichhaltige Physik von Domänenwänden besser zu verstehen und könnten den Weg für die Nutzung von Domänenwänden in zukünftigen elektronischen Bauelementen, wie beispielsweise nanometergroßen Datenspeicherelementen mit hoher Datankapazität, ebnen“, erklärt Somnath Ghara, der als Postdoktorandam Lehrstuhl für Experimentalphysik V an der Forschung beteiligt war.

 

Publikation

Publikation: Somnath Ghara, Korbinian Geirhos, Lukas Kuerten, Peter Lunkenheimer, Vladimir Tsurkan, Manfred Fiebig, István Kézsmárki, Giant conductivity of mobile non-oxide domain walls, Nature Communications 12, 3975 (2021). https://doi.org/10.1038/s41467-021-24160-2.

Ansprechpartner

Lehrstuhlinhaber
Experimentalphysik V
Dr. Somnath Ghara
Wissenschaftlicher Mitarbeiter
Experimentalphysik V

Suche