ERC Consolidator Grant

Members

Research Assistant
Numerische Mathematik
Wissenschaftlicher Mitarbeiter
Numerische Mathematik
Wissenschaftlicher Mitarbeiter
Numerische Mathematik
Lehrstuhlinhaber
Numerische Mathematik

Events

Previous:

 

Workshop on scattering by random heterogeneous media, Universität Augsburg, 13-15. September 2021

Talks

Upcoming:


European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2021), Lisbon, 20.-24. September 2023
The 29th Biennial Numerical Analysis Conference 2021, Department of Mathematics and Statistics at the University of Strathclyde, 27.-30. June 2023
EQUADIFF 15, Masaryk University, Brno, Czech Republic, 11.-15. July 2022
ECCOMAS 2022, Oslo, 5.-9. June 2022

Workshop on Adaptivity, High Dimensionality and Randomness, ESI / Universität Wien, 4.-8. April 2022

   
 

 

Given talks:

 

[20]

 

 

M. Hauck. Super-localization of elliptic multiscale problems with an extension to spatial networks, 28. September 2022 at Computational and Applied Mathematics (CAM) seminar, Chalmers University of Technology and University of Gothenburg.

[19]

 

M. Hauck. Super-localization of the elliptic multiscale problem, 28. July 2022 at the 27th International Domain Decomposition Conference, Prague.

[18]

 

D. Peterseim. The localization problem in numerical homogenization, 23. May 2022 at Asymptotics, Operators, and Functionals Seminar, University of Bath (online)

[17]

 

D. Peterseim. Compression of partial differential operators by numerical homogenization, 12. May 2022 at Numerical methods for Compression and Learning, Gran Sasso Science Institute

[16]

 

D. Peterseim. The localization problem in numerical homogenization, 13. January 2022 at Forschungsseminar Numerische Mathematik, Humboldt-Universität zu Berlin (online)

[15]

 

 

D. Peterseim. Energy-adaptive Riemannian Optimization on the Stiefel Manifold, 3. November 2021 at Computational and Applied Mathematics (CAM) seminar, Chalmers University of Technology and University of Gothenburg (hybrid)

[14]

 

F. Bonizzoni. Model Order Reduction Methods for Time-Harmonic Wave Problems, 1. December 2021 at IWR Kolloquium, Romberg Inaugural Lecture, IWR Heidelberg

[13]

 

D. Peterseim. On the localization problem in numerical homogenization, 25. November 2021 at Wilhelm Killing Kolloquium, Universität Münster

[12]

 

D. Peterseim. Energy-adaptive Riemannian optimization on the Stiefel manifold, 29. September - 1. October 2021 at Numerical Analysis Workshop, Universität Bielefeld

[11]

 

D. Peterseim, Super-localization of elliptic multiscale problems, 22. Septermber 2021 at Second French-German Workshop on Multiscale Problems, Paris

[10]

 

D. Peterseim. Riemannian gradient flows for nonlinear eigenvector problems, 17.-18. September 2021 at FORTH Heraklion, Crete

[9]

 

D. Peterseim, Super-localization of elliptic multiscale problems, 12. July 2021 at workshop about new trends in numerical multiscale methods and beyond, Institut Mittag-Leffler, Stockholm, Sweden (online).

[8]

 

M. Hauck, Multiresolution Localized Orthogonal Decomposition for Helmholtz problems, 25. March 2021 at Sion Young Academics Workshop 2021 (online).

[7]

 

 

D. Peterseim, Introduction to numerical homogenization of PDEs with arbitrary rough coefficients, 16. March 2021 at the 2021 Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) (online).

[6]

 

D. Peterseim, A priori error analysis of a numerical stochastic homogenization method, 01. March 2021 at

Scaling Cascades in Complex Systems 2021, FU Berlin (online).

[5]

 

D. Peterseim, Three thematic lectures on numerical homogenization, 15.-17. February 2021 at ICTS MATHLEC 2021 (invited lecture series, online).

[4]

 

D. Peterseim, Numerical methods for the nonlinear Schrödinger eigenvalue problem, 10. December 2020 at Analysis-Seminar Augsburg-Munich (invited talk, online).

[3]

 

D. Peterseim, Localized Eigenstates by Domain Decomposition, 8. December 2020 at 26th International Domain Decomposition Conference, Chinese University of Hong Kong (online).

[2]

 

D. Peterseim, Nonlinear eigenvector problems and the simulation of Bose-Einstein condensates, 4. December 2020 at Mathematical Colloquium, RWTH Aachen University (invited talk, online).

[1]

 

M. Hauck. Enriched Galerkin - Subcell enrichment and Application to the shallow water equations, 12. October 2020 at MoST 2020.

Publications

Submitted articles:

 

[15]

 

 

P. Freese, M. Hauck and D. Peterseim. Super-localized Orthogonal Decomposition for high-frequency Helmholtz problems, ArXiv e-prints, 2021.

arXiv ]

 

[14]

 

 

F. Bonizzoni, D. Pradovera, and M. Ruggeri. Rational-based model order reduction of Helmholtz frequency response problems with adaptive finite element snapshots. ArXiv e-prints, 2021.

arXiv]

 

[13]

 

 

R. Altmann, D. Peterseim, and T. Stykel. Energy-adaptive Riemannian optimization on the Stiefel manifold. ArXiv e-prints, 2021.

arXiv ]

 

[12]

 

F. Kröpfl, R. Maier and D. Peterseim. Operator compression with deep neural networks. ArXiv e-prints, 2021.

arXiv ]

 

 

Refereed articles:

 

[11]

 

 

M. Hauck and D. Peterseim. Super-localization of elliptic multiscale problems. Accepted for publication in Mathematics of Computation, 2022.

arXiv ]

 

[10]

 

 

M. Hauck and D. Peterseim. Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems. SIAM Multiscale Modeling & Simulation, 20 (2); 657-684, 2022.

[ ]

 

[9]

 

 

R. Altmann, P. Henning and D. Peterseim. Localization and delocalization of ground states of Bose-Einstein condensates under disorder. Accepted for publication in SIAM J. Appl. Math., 2021.
arXiv ]
 

[8]

 

 

R. Altmann, P. Henning and D. Peterseim. The J-method for the Gross-Pitaevskii eigenvalue problem. Numerische Mathematik, 148(3), 575-610, 2021.
arXiv | DOI ]
 

[7]

 

 

R. Altmann, P. Henning and D. Peterseim. Numerical homogenization beyond scale separation. Acta Numerica, pp. 1-86, 2021.

[ DOI ]

 

[6]

 

 

J. Fischer, D. Gallistl and D. Peterseim. A priori error analysis of a numerical stochastic homogenization method. SIAM J. Numer. Anal., 59(2):660-674, 2021.
arXiv | DOI ]
 

 

Monograph:

 

[5]

 

 

A. Målqvist and D. Peterseim. Numerical homogenization by localized orthogonal decomposition. SIAM Spotlights 5, ISBN: 978-1-611976-44-1, 2020.
SIAM ]
 

 

Preliminary work

 

[4]

 

 

M. Feischl and D. Peterseim. Sparse compression of expected solution operators. SIAM J. Numer. Anal.,

58(6):3144-3164, 2020.

arXiv | DOI ]

[3]

 

 

P. Henning and D. Peterseim. Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency. SIAM J. Numer. Anal., 58(3):1744–1772, 2020.
arXiv DOI ]

[2]

 

 

R. Altmann, P. Henning, and D. Peterseim. Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials. M3AS Math. Models Methods Appl. Sci., 30(5):917-955, 2020.

arXiv | DOI ]

[1]

 

 

D. Peterseim and B. Verfürth. Computational high frequency scattering from high contrast heterogeneous media. Math. Comp., 89:2649-2674, 2020.
arXiv | DOI ]
 

Suche