Julian Lorenz

Wissenschaftlicher Mitarbeiter
Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Telefon: +49 (821) 598 4334
E-Mail:
Raum: 1024 (N)
Sprechzeiten: Nach Vereinbarung
Adresse: Universitätsstraße 6a, 86159 Augsburg

Lehre

Veröffentlichungen

2023

2023

Katja Ludwig, Julian Lorenz, Robin Schön and Rainer Lienhart. in press. All keypoints you need: detecting arbitrary keypoints on the body of triple, high, and long jump athletes.
PDF | BibTeX | RIS

Daniel Kienzle, Julian Lorenz, Robin Schön, Katja Ludwig and Rainer Lienhart. 2023. COVID detection and severity prediction with 3D-ConvNeXt and custom pretrainings. DOI: 10.1007/978-3-031-25082-8_33
PDF | BibTeX | RIS | DOI

Katja Ludwig, Daniel Kienzle, Julian Lorenz and Rainer Lienhart. in press. Detecting arbitrary keypoints on limbs and skis with sparse partly correct segmentation masks.
PDF | BibTeX | RIS

Julian Lorenz, Florian Barthel, Daniel Kienzle and Rainer Lienhart. in press. Haystack: a panoptic scene graph dataset to evaluate rare predicate classes.
BibTeX | RIS

Luuk H. Boulogne, Julian Lorenz, Daniel Kienzle, Robin Schön, Katja Ludwig, Rainer Lienhart, Simon Jegou, Guang Li, Cong Chen, Qi Wang, Derik Shi, Mayug Maniparambil, Dominik Müller, Silvan Mertes, Niklas Schröter, Fabio Hellmann, Miriam Elia, Ine Dirks, Matias Nicolas Bossa, Abel Diaz Berenguer, Tanmoy Mukherjee, Jef Vandemeulebroucke, Hichem Sahli, Nikos Deligiannis, Panagiotis Gonidakis, Ngoc Dung Huynh, Imran Razzak, Reda Bouadjenek, Mario Verdicchio, Pasquale Borrelli, Marco Aiello, James A. Meakin, Alexander Lemm, Christoph Russ, Razvan Ionasec, Nikos Paragios, Bram van Ginneken and Marie-Pierre Revel Dubios. in press. The STOIC2021 COVID-19 AI challenge: applying reusable training methodologies to private data.
BibTeX | RIS | URL

Suche