Professur Sprachverstehen mit Anwendung Digital Humanities

Computational Linguistics (CoLi) is an interdisciplinary field that combines the study of linguistics and computer science to investigate the computational aspects of human language. It focuses on developing and applying computational models and algorithms to analyze, understand, and generate natural language. Digital Humanities  (DH) is an interdisciplinary field that combines traditional humanities disciplines, such as literature, history, philosophy, linguistics, and art, with digital technologies and computational methods. It aims to study, interpret, and analyze cultural and historical artifacts using digital tools and methodologies.

 

 

Prof. Dr. Annemarie Friedrich

The core research interests of my group are within computational linguistics and natural language processing with a focus on semantics and information extraction from text, i.e, natural language understanding ("Sprachverstehen"). I am particularly interested in annotation and corpus creation, as any machine-learning model depends on the underlying data.

 

In the machine-learning oriented part of my research, I work on text mining for scientific text, syntactic and semantic parsing, and uncertainty in the context of deep learning for NLP. The corpus-linguistic part of my research has focused on understanding and modeling interactions at the syntax-semantics interface, taking into account influences of discourse and pragmatics. Most of my past research is about the computational modeling of aspect, genericity, and modal verbs.

 

I am currently the vice president of the German Society for Computational Linguistics (GSCL), the scientific association in the German-speaking countries and regions for research, teaching and professional work in natural language processing. I am a member of the ACL Special Interest Group for Annotation (ACL SIGANN).

Ansprechpartner

Prof. Dr. Annemarie Friedrich
Professor
Professur für Sprachverstehen mit Anwendung Digital Humanities
  • Raum 503 (Gebäude F)

Lehrveranstaltungen / Teaching

(Angewandte Filter: Semester: WS 2023/24 | Institutionen: Professur für Sprachverstehen mit Anwendung Digital Humanities | Dozenten: Annemarie Friedrich | Vorlesungsarten: alle)
Name Dozent Semester Typ Sprache
Seminar Natural Language Understanding (Master) Friedrich

Annemarie Friedrich

Wintersemester 2023/24 Seminar deutsch
Exercise to Introduction to Python Programming Friedrich

Annemarie Friedrich

Wintersemester 2023/24 Übung englisch
Introduction to Natural Language Processing (Exercise) Friedrich

Annemarie Friedrich

Wintersemester 2023/24 Übung englisch
Seminar Natural Language Understanding (Bachelor) Friedrich

Annemarie Friedrich

Wintersemester 2023/24 Seminar deutsch
Introduction to Python Programming Friedrich

Annemarie Friedrich

Wintersemester 2023/24 Vorlesung englisch
Introduction to Natural Language Processing Friedrich

Annemarie Friedrich

Wintersemester 2023/24 Vorlesung englisch

Recent Publications

2022 | 2021

2022

Subhash Chandra Pujari, Fryderyk Mantiuk, Mark Giereth, Jannik Strötgen and Annemarie Friedrich. 2022. Evaluating neural multi-field document representations for patent classification.
PDF | BibTeX | RIS | URL

Sophie Henning, Nicole Macher, Stefan Grünewald and Annemarie Friedrich. 2022. MiST: a large-scale annotated resource and neural models for functions of modal verbs in English scientific text.
PDF | BibTeX | RIS | URL

Qingyu Chen, Alexis Allot, Robert Leaman, Rezarta Islamaj, Jingcheng Du, Li Fang, Kai Wang, Shuo Xu, Yuefu Zhang, Parsa Bagherzadeh, Sabine Bergler, Aakash Bhatnagar, Nidhir Bhavsar, Yung-Chun Chang, Sheng-Jie Lin, Wentai Tang, Hongtong Zhang, Ilija Tavchioski, Senja Pollak, Shubo Tian, Jinfeng Zhang, Yulia Otmakhova, Antonio Jimeno Yepes, Hang Dong, Honghan Wu, Richard Dufour, Yanis Labrak, Niladri Chatterjee, Kushagri Tandon, Fréjus A. A. Laleye, Loïc Rakotoson, Emmanuele Chersoni, Jinghang Gu, Annemarie Friedrich, Subhash Chandra Pujari, Mariia Chizhikova, Naveen Sivadasan, Saipradeep VG and Zhiyong Lu. 2022. Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations. DOI: 10.1093/database/baac069
BibTeX | RIS | DOI

Subhash Pujari, Jannik Strötgen, Mark Giereth, Michael Gertz and Annemarie Friedrich. 2022. Three real-world datasets and neural computational models for classification tasks in patent landscaping.
PDF | BibTeX | RIS | URL

2021

Teresa Bürkle, Stefan Grünewald and Annemarie Friedrich. 2021. A corpus study of creating rule-based enhanced universal dependencies for German. DOI: 10.18653/v1/2021.law-1.9
PDF | BibTeX | RIS | DOI

Annemarie Friedrich and Torsten Zesch. 2021. A crash course on ethics for natural language processing. DOI: 10.18653/v1/2021.teachingnlp-1.6
PDF | BibTeX | RIS | DOI

Subhash Chandra Pujari, Annemarie Friedrich and Jannik Strötgen. 2021. A multi-task approach to neural multi-label hierarchical patent classification using transformers. DOI: 10.1007/978-3-030-72113-8_34
BibTeX | RIS | DOI

Stefan Grünewald, Annemarie Friedrich and Jonas Kuhn. 2021. Applying Occam's Razor to transformer-based dependency parsing: what works, what doesn't, and what is really necessary. DOI: 10.18653/v1/2021.iwpt-1.13
PDF | BibTeX | RIS | DOI

Stefan Grünewald, Prisca Piccirilli and Annemarie Friedrich. 2021. Coordinate constructions in English enhanced universal dependencies: analysis and computational modeling. DOI: 10.18653/v1/2021.eacl-main.67
PDF | BibTeX | RIS | DOI

Elizaveta Sineva, Stefan Grünewald, Annemarie Friedrich and Jonas Kuhn. 2021. Negation-instance based evaluation of end-to-end negation resolution. DOI: 10.18653/v1/2021.conll-1.41
PDF | BibTeX | RIS | DOI

Stefan Grünewald, Frederik Tobias Oertel and Annemarie Friedrich. 2021. RobertNLP at the IWPT 2021 shared task: simple enhanced UD parsing for 17 languages. DOI: 10.18653/v1/2021.iwpt-1.21
PDF | BibTeX | RIS | DOI

Subhash Chandra Pujari, Tim Tarsi, Jannik Strötgen and Annemarie Friedrich. 2021. Team RobertNLP at the BioCreative VII LitCovid track: neural document classification using SciBERT.
BibTeX | RIS | URL

Suche